
Reading Notes � of �1 25 Shell Programming in 24 Hours

"
""
1. three types of command!

"
the $ character indicates the prompt. Wherever you see a prompt, you can
type the name of a command and press Enter.""
• simple command"
$ command""
• complex command"
$ command argument1 argument2 argument3 … argumentN""
• compound command"
$ command1 ; command2 ; command3 ; ... ; commandN ;""
The order of execution is command1, followed by command2, followed by
command3, and so on. When commandN finishes executing, the prompt
returns. """
$ date
Thu 2 Oct 2014 15:32:48 EST"
$ who
users terminals time"
======================="
may console Sep 29 12:19
may ttys000 Oct 2 15:32"
$ who am i
may ttys000 Oct 2 15:32
$ ls -Fa
./ .gitconfig Adlm/
../ .idlerc/ Applications/
.CFUserTextEncoding .ipynb_checkpoints/ Desktop/
.DS_Store .ipython/ Documents/
.Trash/ .matplotlib/ Downloads/
.Xauthority .pip/ Library/
.bash_history .rnd Movies/
.bash_profile .spyder2/ Music/
.cache/ .ssh/ Pictures/
.config/ .viminfo Public/
.continuum/ .vimrc code/
.fontconfig/ .wiznote/ install/

Reading Notes � of �2 25 Shell Programming in 24 Hours

$ wc -c .viminfo
 10137 .viminfo""""
2. what is a shell?!"
The shell provides you with an interface to the UNIX system. It gathers input
from you and executes programs based on that input. When a program has
finished executing, it displays that program's output. The shell is sometimes
called a command interpreter.""
The real power of the UNIX shell lies in the fact that it is much more than a
command interpreter. It is also a powerful programming language, complete
with conditional statements, loops, and functions.""
Two major types of shells: "
The different Bourne-type shells follow:"
● Bourne shell (sh)"
● Korn shell (ksh)"
● Bourne Again shell (bash)"
● POSIX shell (sh)""
The different C-type shells follow:"
● C shell (csh)"
● TENEX/TOPS C shell (tcsh)""
If you are using a Bourne-type shell, the default prompt is the $ character. If
you are using a C-type shell, the default prompt is the % character. This book
covers only Bourne-type shells because the C-type shells are not powerful
enough for shell programming.""
In UNIX there are two types of accounts, regular user accounts and the
root account. Normal users are given regular user accounts. The root
account is an account with special privileges the administrator of a UNIX
system (called the sysadmin) uses to perform maintenance and upgrades.""
If you are using the root account, both the Bourne and C shells display the #
character as a prompt. Be extremely careful when executing commands as
the root user because your commands effect the whole system.""""

Reading Notes � of �3 25 Shell Programming in 24 Hours

3. kernel, utility and logging in!"
Utilities are programs you can run or execute. The programs who and date
that you saw in the previous chapter are examples of utilities. Almost every
program that you know is considered an utility.""
The term utility refers to the name of a program, whereas the term command
refers to the program and any arguments you specify to that program to
change its behaviour.""
The kernel is the heart of the UNIX system. It provides utilities with a means
of accessing a machine's hardware. It also handles the scheduling and
execution of commands.""
When a machine is turned off, both the kernel and the utilities are stored on
the machine's hard disks. But when the computer is booted, the kernel is
loaded from disk into memory. The kernel remains in memory until the
machine is turned off. ""
Utilities, on the other hand, are stored on disk and loaded into memory only
when they are executed. For example, when you execute the command $
who, the kernel loads the who command from the machine's hard disk, places
it in memory, and executes it. When the program finishes executing, it
remains in the machine's memory for a short period of time before it is
removed. This enables frequently used commands to execute faster.""
The shell is a program similar to the who command. The main difference is
that the shell is loaded into memory when you log in. ""
When you first connect to a UNIX system, you usually see a prompt such as the following:
login:
You need to enter your username at this prompt. After you enter your username, another
prompt is presented:
login: ranga
Password:
You need to enter your password at this prompt. "
These two prompts are presented by a program called getty. These are its tasks:
1. Display the prompt login.
2. Wait for a user to type a username.
3. After a username has been entered, display the password prompt.
4. Wait for a user to enter a password.
5. Give the username and password entered by the user to the login command and exit. "

Reading Notes � of �4 25 Shell Programming in 24 Hours
After login receives your username and password, it looks through the file /etc/
passwd for an entry matching the information you provided. If it finds a match, login
executes a shell and exits.
As an example, on my system the matching entry for my username, ranga, in file /etc/
passwd is: ranga:x:500:100:Sriranga Veeraraghavan:/home/ranga:/bin/
bash (will be explained later) "
If no match is found, the login program issues an error message and exits. At this point
the getty program takes over and displays a new login prompt.
The shell that login executes is specified in the file /etc/passwd. Usually this is one of
the shells that I covered in the previous chapter. "
In this book I assume that the shell started by the login program is /bin/sh.
Depending on the version of UNIX you are running, this might or might not be the Bourne
shell:
● On Solaris and FreeBSD, it is the Bourne shell.
● On HP-UX, it is the POSIX shell.
● On Linux, it is the Bourne Again shell. """
4. shell script and initialisation!"
Scripts are the power behind the shell because they enable you to group
commands together to create new commands.""
To ensure that the correct shell is used to run the script, you must add the
following "magic" line to the beginning of the script:"
#!/bin/sh!"
#!/bin/sh
print out the date and who's logged on
date ; who ; ""
The shell can be run in another mode, called noninteractive mode . In this
mode, the shell does not interact with you; instead it reads commands stored
in a file and executes them. When it reaches the end of the file, the shell
exits. "
You can start the shell noninteractively as follows:
$ /bin/sh filename
Here filename is the name of a file that contains commands to execute. As
an example, consider the
compound command:
$ date ; who

Reading Notes � of �5 25 Shell Programming in 24 Hours

Put these commands into a file called logins. First open a file called
logins in an editor and type the command shown previously. Assuming that
the file is located in the current directory, after the file is saved, the command
can run as
$ /bin/sh logins ""
When the login program executes a shell, that shell is uninitialized. When a
shell is uninitialized, important parameters required by the shell to function
correctly are not defined.
The shell undergoes a phase called initialization to set up these parameters.
This is usually a two step process that involves the shell reading the following
files:
/etc/profile
profile
The process is as follows:
1. The shell checks to see whether the file /etc/profile exists.
2. If it exists, the shell reads it. Otherwise, this file is skipped. No error
message is displayed.
3. The shell checks to see whether the file .profile exists in your home
directory. Your home directory is the directory that you start out in after you
log in.
4. If it exists, the shell reads it; otherwise, the shell skips it. No error message
is displayed. As soon as both of these files have been read, the shell displays
a prompt:
$ "
The file .profile is under your control. You can add as much shell
customisation information as you want to this file. The minimum set of
information that you need to configure includes
● Setting the Terminal Type
● Setting the PATH

● Setting the MANPATH

"
If needed, go to Page 35 to get some details about how to configure the
information above."""""
5. Working with Files (Ordinary Files) ls, cat, wc, cp, rm, mv

"
In UNIX there are three basic types of files:"
● Ordinary Files"

Reading Notes � of �6 25 Shell Programming in 24 Hours

● Directories"
● Special Files""
When the -F option is specified to ls, it appends a character indicating the
file type of each of the items it lists. The exact character depends on your
version of ls. For ordinary files, no character is appended. For special files, a
character such as !, @, or # is appended to the filename. "
Some of the items have a / at the end: each of these items is a directory.
The other items, such as hw1, have no character appended to them. This
indicates that they are ordinary files. "
$ ls -F "
bin/ hosts lib/
ch07 hw1 pub/
ch07.bak hw2 res.01
docs/ hw3 res.02
res.03
test_results
users work/ "
Other arguments, for example:""
$ ls -1" (The numeric digit “one”.) Force output to be one entry per line""
$ ls -a" list invisible files""
UNIX programs (including the shell) use most of these files to store
configuration information. Some common examples of hidden files:""
● .profile, the Bourne shell (sh) initialization script"
● .kshrc, the Korn shell (ksh) initialization script"
● .cshrc, the C shell (csh) initialization script"
● .rhosts, the remote shell configuration file""
All files that do not start with the . character are considered visible.""
$ ls -a -F" list all files with their file types""
./ .profile docs/ lib/"
../ .rhosts hosts pub/"
.emacs bin/ hw1 res.01"
.exrc ch07 hw2 res.02"

Reading Notes � of �7 25 Shell Programming in 24 Hours

.kshrc ch07.bak hw3 res.03""
From the output above, there are two hidden directories (. and ..). These two
directories are special entries that are present in all directories. The first
one, ., represents the current directory. The second one, .., represents the
parent directory." """
The commands
$ ls -aF
$ ls -Fa
are the same as the command
$ ls -a -F
As you can see, the order of the options does not matter to ls. As an example of option
grouping, consider the equivalent following commands:
ls -1 -a -F
ls -1aF
ls -a1F
ls -Fa1
Any combination of the options -1, -a, and -F produces identical output:
./
../
.emacs
.exrc
.kshrc
.profile
.rhosts
bin/
ch07
ch07.bak
docs/
hosts
hw1
hw2
hw3
lib/
pub/
res.01
res.02
res.03 ""
$ cat filename1 filename2 …"" viewing the content of files""
$ cat -b filename1 filename2 "" the lines of output are numbered""
If you specify more than one file, wc gives the individual counts along with a
total. For example, the command

Reading Notes � of �8 25 Shell Programming in 24 Hours

"
$ wc .rhosts .profile "
produces the following output:
7 14 179 .rhosts
133 405 2908 .profile
140 419 3087 total ""
$ wc -l" " Counts the number of lines"
$ wc -w" " " Counts the number of words"
$ wc -m or -c" Counts the number of characters"""
$ cp source destination!
Here source is the name of the file that is copied and destination is the name
of the copy.""
Interactive mode -i applies for cp, mv and rm.!
No error message is generated if the destination already exists. In this case,
the destination file is automatically overwritten.
To avoid this behavior you can specify the -i (i as in interactive) options to
cp. If the file test_results.orig exists, the command
$ cp -i test_results test_results.orig
results in a prompt something like the following:
overwrite test_results.orig? (y/n)
If you choose y (yes), the file will is overwritten. If you choose n (no), the file
test_results.orig isn’t changed. "
If the destination is a directory, the copy has the same name as the
source but is located in the destination directory. For example, the
command
$ cp test_results work/ "
If more than two inputs are given, cp treats the last argument as the
destination and the other files as sources. This works only if the
sources are files and the destination is a directory, as in the following
example:
$ cp res.01 res.02 res.03 work/ "
$ mv source destination!
Here source is the original name of the file and destination is the new
name of the file."

Reading Notes � of �9 25 Shell Programming in 24 Hours

6. Working With Directories (In UNIX/Linux everything's a file:)!"
UNIX uses a hierarchical structure for organising files and directories. This
structure is often referred to as a directory tree . The tree has a single root
node, the slash character (/), and all other directories are contained below it.
You can use every directory, including /, to store both files and other
directories. Every file is stored in a directory, and every directory except / is
stored in another directory.""
In order to access a file or directory, its pathname must be specified. As you
have seen, a pathname consists of two parts: the name of the directory and
the names of its parents. UNIX offers two ways to specify the names of the
parent directory. That means two types of pathnames:"
● Absolute"
●Relative""
Look at an example that illustrates how relative pathnames are used. Assume
that the current directory is"
/home/ranga/work!
Then the relative pathname"
../docs/ch5.doc!
represents the file"
/home/ranga/docs/ch5.doc!"
whereas"
./docs/ch5.doc!
represents the file"
/home/ranga/work/docs/ch5.doc!
You can also refer to this file using the following relative path:"
docs/ch5.doc!"
cd! ! change directory (or go back to current user’s main directory)"
mkdir" create new directory""
list the files in a directory: "
$ ls /usr/local"
$ ls ../../usr/local"
$ ls -aF /usr/local "
Sometimes when you want to create a directory, its parent directory or
directories might not exist. In this case, mkdir issues an error message.
Here is an illustration of this:"
$ mkdir /tmp/ch04/test1!

Reading Notes � of �10 25 Shell Programming in 24 Hours

mkdir: Failed to make directory "/tmp/ch04/test1"; No
such file or directory!"
In such cases, you can specify the -p (p as in parent) option to the mkdir
command. It creates all the necessary directories for you. For example"
$ mkdir -p /tmp/ch04/test1!
creates all the required parent directories.""
An error also occurs if you try to create a directory with the same name as a
file. For example, the following commands
$ ls -F docs/names.txt
names
$ mkdir docs/names
result in the error message
mkdir: cannot make directory 'docs/names': File exists "
$ cp -r docs/book /mnt/zip
copies the directory book located in the docs directory to the directory /
mnt/zip. It creates a new directory called book under /mnt/zip. "
$ cp -r docs/book docs/school work/src /mnt/zip
copies the directories school and book, located in the directory docs, to /
mnt/zip. It also copies the directory src, located in the directory work, to /
mnt/zip. After the copies finish, /mnt/zip looks like the following:
$ ls -aF /mnt/zip
./ ../ book/ school/ src/ "
You can also mix files and directories in the argument list. For example
$ cp -r .profile docs/book .kshrc doc/names work/src /
mnt/jaz copies all the requested files and directories to the directory /
mnt/jaz.
If your argument list consists only of files, the -r option has no effect. "
$ mv work/ docs/ .profile pub/
moves the directories work and docs along with the file .profile into the
directory pub. "
You can use two commands to remove directories:
rmdir
rm -r
Use the first command to remove empty directories. It is considered "safe"
because in the worst case, you can accidentally lose an empty directory,
which you can quickly re-create with mkdir.

Reading Notes � of �11 25 Shell Programming in 24 Hours

The second command removes directories along with their contents. It is
considered "unsafe" because in the worst case of rm -r, you could lose
your entire system. """
7. File Types! """"""""""""""""
The ls -l output for a regular file:"
-rw------- 1 may staff 10137 6 Sep 12:14 .viminfo!"
A symbolic link is a special file that points to another file on the system. "
The ls -l output for a symbolic link looks like this:""
lrwxrwxrwx 1 root root 9 Oct 23 13:58 /bin/ -> ./usr/bin/
The output indicates that the directory /bin is really a link to the directory
./usr/bin. "
Create symbolic links using the ln command with the -s option. The syntax
is as follows: ln -s source destination
Here, source is either the absolute or relative path to the original version of
the file, and destination is the name you want the link to have. e.g. "
$ ln -s ../httpd/html/users/ranga ./public_html
You can see the relative path by using ls -l: $ ls -l ./public_html "
lrwxrwxrwx 1 ranga users 26 Nov 9 1997
public_html -> ../httpd/html/users/ranga

Reading Notes � of �12 25 Shell Programming in 24 Hours

"""
You can access UNIX devices through reading and writing to device files.
These device files are access points to the device within the file systems.
Usually, device files are located under the /dev directory. The two main
types of device files are
Character special files:
Character special files provide a mechanism for communicating with a device
one character at a time. The output of ls-l of a character special file e.g.
crw------- 1 ranga users 4, 0 Feb 7 13:47 /
dev/tty0
you also see two extra numbers before the date. The first number is called
the major number and the second number is called the minor number. UNIX
uses these two numbers to identify the device driver that this file
communicates with. "
Block special files:
Block special files also provide a mechanism for communicating with device
drivers via the file system. These files are called block devices because they
transfer large blocks of data at a time. This type of file typically represents
hard drives and removable media.
Look at the ls -l output for a typical block device.
brw-rw---- 1 root disk 8, 0 Feb 7 13:47 /dev/sda
Here the first character is b, indicating that this file is a block special file. Just
like the character special files, these files also have a major and a minor
number. "
Named Pipe
One of the greatest features of UNIX is that you can redirect the output of one
program to the input of another program with very little work. For example,
the command who | grep ranga takes the output of the who command
and makes it the input to the grep command. This is called piping the output
of one command into another. You will examine input and output redirection in
great detail in Chapter "Input/Output." "
Socket files are another form of interprocess communication, but sockets
can pass data and information between two processes that are not running
on the same machine. """""

Reading Notes � of �13 25 Shell Programming in 24 Hours

*extras in advance:
1. http://docstore.mik.ua/orelly/unix/upt/ch44_02.htm
2. http://stackoverflow.com/questions/21640837/mxpost-bash-mxpost-bin-
kshm-bad-interpreter-no-such-file-or-directory "
3. check whether a file exists under the current directory. If not, displays a
message and then exits. "
#!/bin/sh!
#more comment here!
if [! -f ./records.txt]; then!
 echo "File not found!"!
fi!"
8. Owners, Groups, and Permissions!"

Three kinds of permissions:"
● Owner permissions"
● Group permissions"
●All other users permissions""
You can perform the following
actions on a file:"
● Read"
● Write"
●Execute""
You can display the permissions
of a file using the ls -l
command.""
Additional permissions are given
to programs via a mechanism
known as the Set User ID
(SUID) and Set Group ID
(SGID) bits. When you execute
a program that has the SUID bit
enabled, you inherit the
permissions of that program's
owner. Programs that do not
have the SUID bit set are run
with the permissions of the user
who started the program."

Reading Notes � of �14 25 Shell Programming in 24 Hours

To give the "world" read access to all files in a directory, you can use one of
the following commands:"
$ chmod a=r *! or! $ chmod guo=r *!"
To stop anyone except the owner of the file .profile from writing to it, try this: "
$ chmod go-w .profile!"
If you need to apply more than one set of permissions changes to a file or
files, use a comma separated list. For example" "
$ chmod go-w,a+x a.out""
if the directory pub contains the following directories: "
$ ls pub"
./ ../ README faqs/ src/"
you can change the permission read permissions of the file README along
with the files contained in the directories faqs and src with the following
command: "" $ chmod -R o+r pub!""
The chown command stands for "change owner" and is used to change the
owner of a file. "
chown ranga: /home/httpd/html/users/ranga changes the owner
of the given directory to the user ranga. "
The chown command will recursively change the ownership of all files when
the -R option is included. For example, the command
chown -R ranga: /home/httpd/html/users/ranga
changes the owner of all the files and subdirectories located under the given
directory to be the user ranga.
""
The chgrp command stands for "change group" and is used to change the
group of a file. "
As an example
chgrp authors /home/ranga/docs/ch5.doc
changes the group of the given file to be the group authors. Just like chown,
all versions of chirp understand the -R option also.
On systems without this command, you can use chown to change the group
of a file. For example, the command
chown :authors /home/ranga/docs/ch5.doc
changes the group of the given file to the group authors.

Reading Notes � of �15 25 Shell Programming in 24 Hours

9. Processes!"
In UNIX every program runs as a process. ""
● Starting processes"
Whenever you issue a command in UNIX, it creates, or starts, a new process.
When you tried out the ls command to list directory contents, you started a
process (the ls command).""
The operating system tracks processes through a five digit ID number known
as the pid or process ID . Each process in the system has a unique pid. Pids
eventually repeat because all the possible numbers are used up and the next
pid rolls or starts over. At any one time, no two processes with the same pid
exist in the system because it is the pid that UNIX uses to track each process.
You might be interested in the fact that the pid usually rolls over at the 16-bit
signed boundary. The highest it gets before rolling over is 32,767.""
When you start a process (run a command), there are two ways you can run
it--in the foreground or background. The difference is how the process
interacts with you at the terminal.""
By default, every process that you start runs in the foreground. It gets its input
from the keyboard and sends its output to the screen. """
The advantage of running a process in the background is that you can run
other commands; you do not have to wait until it completes to start another!""
The simplest way to start a background process is to add an ampersand (&)
at the end of the command.""
completion message:"
[1] + Done ls ch0*.doc &
$
The first line tells you that the ls command background process finishes successfully.
The second is a prompt for another command. ""
enable monitoring with the following:"
set -o monitor"
To disable the monitoring messages, you use +o:"
set +o monitor"
You can also check all the shell options (settings) with the following: set -o"

Reading Notes � of �16 25 Shell Programming in 24 Hours

How to move a foreground process to the background:"
When the foreground process is running, press Ctrl + Z to stop it, then enter
the bg command. "
command fg %1 does the contrary (move background to foreground). """
● Listing running processes"
The jobs command shows you the processes you have suspended and the
ones running in the background. Because the jobs command is a foreground
process, it cannot show you your active foreground processes.""
In the following example, I have three jobs. The first one (job 3) is running, the second (job
2) is suspended (a foreground process after I used Ctrl+Z), and the third one (job 1) is
stopped in the background to wait for keyboard input:
$ jobs
[3] + Running
[2] - Stopped (SIGTSTP)
[1] Stopped (SIGTTIN)
first_one &
second_one
third_one & "
Another command that shows all processes running is the ps (Process
Status) command.""
For UNIX based OS, the basic ps command offers four pieces of information:
the pid, the TTY (terminal running this process), the Time or amount of CPU
consumed by this process, and the command name running.""
$ ps
 PID TTY TIME CMD
43232 ttys000 0:00.01 -bash ""
● Killing processes"
The job number is prefixed with a percent sign. To kill job number 1:
$ kill %1
[1] - Terminated third_one &
$
You can also kill a specific process by specifying the process ID on the
command line without the percent sign used with job numbers. To kill job
number 2 (process 6738) in the earlier example using process ID, I use the
following:
$ kill 6739
$

Reading Notes � of �17 25 Shell Programming in 24 Hours

In reality, kill does not physically kill a process; it sends the process a
signal. By default, it sends the TERM (value 15) signal. A process can choose
to ignore the TERM signal or use it to begin an orderly shut down (flushing
buffers, closing files, and so on). If a process ignores a regular kill
command, you can use kill -9 or kill -KILL followed by the process
ID or job number (prefixed with a percent sign). This forces the process to
end. ""
● Parent and child processes"
In the ps -f example in the ps command section, each process has two ID
numbers assigned to it: process ID (pid) and parent process ID (ppid). ""
Each user process in the system has a parent process. Most commands that
you run have the shell as their parent. The parent of your shell is usually the
operating system or the terminal communications process.""
When a child is forked, or created, from its parent, it receives a copy of the
parent's environment, including environment variables. The child can change
its own environment, but those changes do not reflect in the parent and go
away when the child exits."""
10. Variables & Arrays!"
$ FRUIT=apple
$ FRUIT[1]=peach
the element FRUIT has the value apple. At this point any accesses to the
scalar variable FRUIT are treated like an access to the array item
FRUIT[0]. "
The one thing to be careful about is using values that have spaces.
For example,
$ FRUIT=apple orange plum
results in the following error message:
sh: orange: not found.
In order to use spaces you need to quote the value.
For example, both of the following are valid assignments:
$ FRUIT="apple orange plum"
$ FRUIT='apple orange plum’ "
$ set -A band derri terry mike gene or
$ band=(derri terry mike gene)

Reading Notes � of �18 25 Shell Programming in 24 Hours

is equivalent to the following commands:
$ band[0]=derri
$ band[1]=terry
$ band[2]=mike
$ band[3]=gene "
To access the array item at index 5 use the following: "
${adams[5]}!
To access every item in the array use the following: "
${adams[@]}!""
readonly NAME!
often used in scripts to make sure that critical variables are not overwritten
accidentally."
$ FRUIT=kiwi!
$ readonly FRUIT!
$ echo $FRUIT!
kiwi!
$ FRUIT=cantaloupe!
The last command results in an error message:"
/bin/sh: FRUIT: This variable is read only.!""
unset FRUIT
unsets the variable FRUIT.
You cannot use the unset command to unset variables that are marked
readonly. ""
When a shell is running, three main types of variables are present:"
● Local Variables"
● Environment Variables"
● Shell Variables""
A local variable is a variable that is present within the current instance of the
shell. It is not available to programs that are started by the shell. The
variables that you looked at previously have all been local variables.""
An environment variable is a variable that is available to any child process of
the shell. Some programs need environment variables in order to function
correctly. Usually a shell script defines only those environment variables that
are needed by the programs that it runs."

Reading Notes � of �19 25 Shell Programming in 24 Hours

A shell variable is a special variable that is set by the shell and is required by
the shell in order to function correctly. Some of these variables are
environment variables whereas others are local variables.""
How to make environment variables? exporting them."
name=value; export name!
An example of this is PATH=/sbin:/bin; export PATH!
export more than one variable to the environment:"
export PATH HOME UID""""
11. Filename Substitution – Globbing with * ? [] !!"
Globbing is Case Sensitive.""
*!
Matching a File Prefix. e.g."
$ ls ch1*!
matches all the files and directories in the current directory that start with the
letters ch1. The output is similar to the following:"
ch10-01 ch10-02 ch10-03 ch11-01 ch11-02 ch11-03!"
Matching a File Suffix. e.g."
$ ls *doc!
matches all the files and directories in the current directory that end with the
letters doc""
Matching Suffixes and Prefixes. e.g."
$ ls Backup*doc!
matches all the files in the current directory that start with the letters Backup
and end with the letters doc!"
or even"
$ ls CGI*st*java!"
?!
One limitation of the * wildcard is that it matches one or more characters each
time. (In computing, wildcard means a character that will match any character
or sequence of characters in a search.) In order to match only one character,
use the ? wildcard. Each ? represents for one character.""

Reading Notes � of �20 25 Shell Programming in 24 Hours

$ ls ch0?.doc!
$ ls ch??.doc!"
[]!
$ ls [a-z]*!
lists all the files starting with a lowercase letter. "
$ ls [A-Z]*!
lists all the files starting with uppercase letters."
$ ls [a-zA-Z]*!
matches all files that start with a letter."
$ ls *[a-zA-Z0-9]!
matches all files ending with a letter or a number.""
!!
$ ls [!a]*!
list all files except those that start with the letter a""""
12. Quoting!"
a list of most of the shell special characters (also called metacharacters): "
* ? [] ' " \ $; & () | ^ < > new-line space tab!""
• backslash: use before a single special character. e.g."
echo Hello\; world!
The backslash causes the ; character to be handled as any other normal
character. The resulting output is"
Hello; world!""
• single quote : quote a large group of characters."
exception: Single quotes must be entered in pairs. You cannot get around by
putting a backslash before an embedded single quote. e.g."
echo 'It's Friday’!
should be corrected to"
echo It\'s Friday!""
• double quote: take away the special meaning of all characters except the

following"

Reading Notes � of �21 25 Shell Programming in 24 Hours

● $ for parameter substitution ($variable name for actual variable values)."
● ́Backquotes for command substitution."
● \$ to enable literal dollar signs."
● \ ́to enable literal backquotes."
● \" to enable embedded double quotes."
● \\ to enable embedded backslashes."
● All other \ characters are literal (not special).""
e.g."
echo "The DOS directory is \"\\windows\\temp\""!
The output looks like this:"
The DOS directory is “\windows\temp"!""
13. Flow Control!"
Two powerful flow control mechanics are available in the shell:"
● The if statement"
● The case statement""
The basic if statement syntax follows:"
if list1 !
then!
! list2 !
elif list3!
then!
! list4!
else!
! list5!
fi!""
File test expressions test whether a file fits some particular criteria. The
general syntax for a file test is"
test option file!
or"
[option file]!"
examples:"
$ if [-d /home/ranga/bin]; then PATH=“$PATH:/home/ranga/
bin"!
fi!

Reading Notes � of �22 25 Shell Programming in 24 Hours

testing whether the directory /home/ranga/bin exists. If it does, append it to
the variable PATH.""
if [-s $HOME/.bash_aliai]; then . $HOME/.bash_aliai ; fi!
execute commands stored in the file $HOME/.bash_aliai if it exists. "

Can also use test to compare strings and numerical variables."

Reading Notes � of �23 25 Shell Programming in 24 Hours

"
The case statement syntax:"
case word in !
! pattern1) list1;; !
! pattern2) list2;; !
esac!""
An example of a simple case statement that uses patterns is
case "$TERM" in
 *term)
 TERM=xterm ;;
 network|dialup|unknown|vt[0-9][0-9][0-9])
 TERM=vt100 ;;
esac
Here the string contained in $TERM is compared against two patterns. If this
string ends with the string term, $TERM is assigned the value xterm.
Otherwise , $TERM is compared against the strings network, dialup,
unknown, and vtXXX, where XXX is some three digit number, such as 102.
If one of these strings matches, $TERM is set to vt100. ""
Given the following variable declarations,
HOME=/home/ranga
BINDIR=/home/ranga/bin
the output of the following if statement
if [$HOME/bin = $BINDIR] ; then
 echo "Your binaries are stored in your home
directory."
fi
is what echo contains."

Reading Notes � of �24 25 Shell Programming in 24 Hours

14. Loops!"
● The while loop"
● The for loop""
The basic syntax of the while loop is
while command
do
 list
done "
Here is a simple example that uses the while loop to display the numbers
zero to nine:
x=0
while [$x -lt 10] #lt means less than
do
 echo $x
 x= ́echo "$x + 1" | bc ́
done
example:"
RESPONSE=
while [-z "$RESPONSE"] ;
do
 echo "Enter the name of a directory where your files
are located:\c "
 read RESPONSE
 if [! -d "$RESPONSE"] ; then
 echo "ERROR: Please enter a directory pathname."
RESPONSE= fi
done
Here you store the user's response in the variable RESPONSE. Initially this
variable is set to null, enabling the while loop to begin executing. "
*until loop"
until command
do
 list
done "
for loop"
for name in word1 word2 ... wordN
do
 list
done "

Reading Notes � of �25 25 Shell Programming in 24 Hours

example:"
for FILE in $HOME/.bash*!
do!
 cp $FILE ${HOME}/public_html!
 chmod a+r ${HOME}/public_html/${FILE}!
done!"
*select loop"
*break continue"""
15. Output & Input!"
In UNIX, the process of capturing the output of a command and storing it in a
file is called output redirection because it redirects the output of a command
into a file instead of the screen. ""
• the output redirection operator >"
• appends output to a file >> "

• (output is appended to the end of the specified file)"
• Redirecting Output to a File and the Screen" command | tee file"
• input redirection: command < file"
• read contents like scanf in C"""
16. Function & Text Filters!"
“PATH is an environment variable on Unix-like operating systems, DOS, OS/
2, and Microsoft Windows, specifying a set of directories where executable
programs are located. In general, each executing process or user session
has its own PATH setting. “""
function definition & invoking:"
name () { list ; }!
$ name!"
The grep command displays every line in file that contains word. "
grep word file!
Can specify more than one file."
If grep cannot find a line in any of the specified files that contains the
requested word, no output is produced."
To match words regardless of the case that you specify, use the -i option."

